What can we measure?

This presentation and the text, images and graphs it
contains may only be used for University of Arizona LTRR
classes and workshops. They must not be reproduced or
distributed.
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What can we measure?

Structural:

Macro features seen with dissecting microscope — ring
width, earlywood width, latewood width

Anomalies —light rings; micro rings; frost rings, resin
ducts, false rings, etc.

Micro features needing compound microscope: conifers —
tracheid dimensions; angiosperms — cell dimensions
and shapes

Integrative features — densitometry

Chemical:
Organic; 1norganic; i1sotopic — in other lectures
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Structure — macro and micro -
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Macro-structure 1n conifers.

Sensitivity can be seen in all these variables

under certain circumstances.
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Measuring ring-width
Usually done by working along a line more or less at 90
degrees to ring boundary, using cross-hairs to locate

intersection of line and ring boundary.
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It might be better to take
the mean of many lines:



Fig. 2.2. Device for measuring and processing tree-ring width data: I stereomicroscope,
2 a specimen table with precision feed providing a linear sample displacement to
0.001 mm, 3 computer for compiling and processing data
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Measuring earlywood and
latewood width.

i, AR In this case the
= boundary 1s relatively
= s clear, but there are
species where it 1S not

It 1s good to check whether several observers put the
boundary 1n the same place.
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Record anomalies and their
frequency

Anomalies
— light rings;
— MICTO 1Ings;
— frost rings;
—resin ducts;

— false rings and density variations.
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Upper three panels — light rings of

black spruce from the northern

treeline 1n Quebec.
Bottom panel — normal ring from
ty  the same place.
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Light rings 1n black spruce are

‘characterized by pale-colored

A latewood (LW) made of single or
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very few latewood cell layers with
thin-walled cells’ Wang et al,
2000.

EW - earlywood
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Micro-ring 1n larch 1n northern Siberia
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Photo thanks to Mukhtar Naurzbaev 10
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Frost ring 1n pine from Mongolia

Gordon Jacoby collected this sample of
tree rings from a Siberian pine in
Mongolia, which records the years AD
534-539 (left to right). The narrow,
distorted rings for 536 and 537 indicate a
drastic cooling that froze sap in the cells
during the growing season. Photo by Dee
Breger. Lamont-Doherty Earth
Observatory, Columbia University

AD 536 — the same year as the
micro-ring in Siberia!)
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Frost rings in bristlecone
pine, White Mts,
California
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AD 1965 frost ring PRL3A
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At upper tree limit in Ruby Range, northern Nevada.
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False 1
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Microstructures 1n conifers

Cell sizes and wall thickness
1n transverse section;

Fiber lengths;

Other geometry — for
example, length of taper;

Microfibril orientations;

Extent of lignification

Number and disposition of
pits.
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What 1s a tracheidogram?
Cell measurements from tree rings can tell about different
parts of the growing season. For example, cell size (circles)
and double cell-wall thickness (squares) for years of early
growth start (solid line) and late start (broken line).
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What does this graph
of larch tracheidograms

tell us?
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Tracheidograms of rings from giant sequoia
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Fig. 3. Examples of standard tracheidograms measured (Sequoiadendron gigantewn from the Giant Forest in Sequoia National
Park, AD 1930-1932). The black lines are the cell size and wall thickness means, the gray lines are the measurements of the
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five radial files used to produce the mean. The tracheidograms arc standardized to a length of 20 cells.

Munro et al, 1996
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Chelyabinsk, Russia, February 15, 2013

Russian Ememgency Ministry

A meteor (17 meters diameter) crashes through the atmosphere
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Tunguska, Russia, June 30, 1908, an even
bigger meteor (estimated 40 m diameter)

explodes ~8.5 km above ground.

Millions of trees blown over, but some at
the epicenter survived, but with needles

and branch
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TREE-RING RECORD OF THE TUNGUSKA EVENT 397

Larix sibirica | A

1907 1808 1909

FIG. 6. A: Transverse section of a larch sample showing the rings for 1907-1915. B: Three views of the disrupted
tracheids in the 1908 ring. The normal anatomy in the rings formed in the subsequent years can be seen in A.

Vaganov, Hughes, Silkin, Nesvetailo, 2004
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Cellular analyses: sizes and numbers of cells affected
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FIG. 3. Tracheid cell dimensions for the rings formed in 1906-1910. A: Radial cell size (line 1) and cell wall thick-
ness (line 2) of each cell in sequence for a larch sample. Note failure of cell walls to thicken in 1908. B: As in A but
for a spruce sample. Note the drastically reduced number of cells produced in 1909 and 1910, but the normal thick-
ening of the last formed cells in each of these years.

What can we infer from this?
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Thin section bristlecone pine tree SA from Pearl Peak, NV

Double-stained Safranin-Astra blue

U

Picture — Alma Piermatte1
Sample — Matthew Salzer
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Incomplete lignification
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Microstructure 1n angiosperms

* Proportions of x-section
area taken by different
cell types;

e Size distribution of each
cell type;

« Geometry of cell types —
e.g. circularity of vessels;

e Pattern of transition in
cell mix across ring.
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Integrative structural measures - densitometry

earlywood
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Smaller cells with thicker walls mean greater density in latewood. Packing
density of cellulose microfibrils and proportion of lignin in cell wall will
also affect this. Note year-to-year changes in shape of density trace, and,

especially, in maximum density.
In regions with cool, moist summers maximum latewood density is often a

good recorder of growing season temperature.
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X-ray microdensitometry

* The most common way to measure these
fine variations 1n density is to make contact
prints with X-rays.

* The denser the wood, the smaller the
proportion of X-rays that get through the
wood to the film.

* This can be calibrated using materials of
known density.

Malcolm K Hughes, Laboratory of Tree-Ring Research
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Problems

Wood contains X-ray opaque materials that are
mobile, notably water.

Making a contact print of something with
thickness introduces fuzziness in 1image.

In addition, wood has structure that can further
complicate getting sharp picture — fiber direction
must be parallel to X-ray beam.

Ring boundaries vary in orientation.

Malcolm K Hughes, Laboratory of Tree-Ring Research 27



From Schweingruber, 1989

Dealing with varying fiber angle
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Well cored sample

Bad cored sample. Corrections have to be made by overlapping saw
cuts.

The quality of the X-ray picture.
Top: Good — here the structure is clearly visible.

Bottom: Poor — here the structure is blurred.
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Removing mobile substances
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From Schweingruber, 1989
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Limber pine, Labarge Creek, Wyoming
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Alternatives to x-ray densitometry

 Measure of surface brightness (Sheppard
et al) — if can remove effect of color,
surface brightness is very similar to
density, with no problems of parallax or
fuzziness and preparation is simpler

e Similar to this, measure blue reflectance
of the wood surface (Campbell et al)

* Varying dielectric constant (Schinker et al).
Drag electrodes across wood surface —
similar advantages, but 30 um penetration.
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Can now use custom software and high-resolution scanner to
handle surface brightness, blue reflectance and analyze optical
density of radiographs
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Alternatives to x-ray densitometry

* Measure of surface brightness (Sheppard et
al) — 1f can remove effect of color, surface
brightness 1s very similar to density, with no
problems of parallax or fuzziness and
preparation is simpler

e Similar to this, measure blue reflectance of
the wood surface (Campbell et al)

* Varying dielectric constant (Schinker et
al). Drag electrodes across wood surface
— similar advantages, but only 30 um
penetration.
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What can we measure?

Structural:

Macro features seen with dissecting microscope — ring
width, earlywood width, latewood width

Anomalies —light rings; micro rings; frost rings, resin
ducts, false rings, etc.

Micro features needing compound microscope: conifers —
tracheid dimensions; angiosperms — cell dimensions
and shapes

Integrative features — densitometry

Chemical:
Organic; 1norganic; i1sotopic — in forthcoming lectures
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