Site and tree selection in dendroecology

Don Falk, University of Arizona

What is the most important criterion for site and tree selection?

What is the most important criterion for site and tree selection?

YOUR QUESTION!

In other words:

- There is <u>no</u> universal guide to site or tree selection
 - Like everything else in research*, it should be guided <u>completely</u> by your study design, which in turn should be guided <u>completely</u> by the question(s) you hope to answer

That said, to do dendrochronology of any kind we require:

- Growth increment (e.g. "rings") distinct and detectable (by some method)
- 2. Reliable **annual** ring formation
- Ring formation sensitive to time-varying environmental conditions (growth-limiting environmental factors)
- Sensitivity reflected in growth variability among years
- 5. Strong **common patterns** of measurable properties

The canonical view (Fritts 1965):

A few notes about the canon:

- Series that are either too complacent or overly sensitive are generally problematic
- 2. Gradients are species specific; thus the x-axis really refers to the middle and lower elevational range of a population of species X
- 3. Note that the upper elevational limit is not shown; what might happen up there?
- Elevation is really a proxy for other variables!

Species populations vary **uniquely** along environmental gradients

Figure: Dr Michael Palmer, University of Oklahoma

How do we apply our "fundamental sampling principle" to this ecological understanding of a tree?

- Follow the principle of **limiting factors to growth**:
- If we are trying to reconstruct "climate" (sic) we want "climate-limited growth"
- If we are trying to answer an ecological question...
 - Not so obvious!

Liebig's "Law of the Minimum": Growth is controlled by the essential factor in most limited supply, not by total resources

Liebig applied this principle to the development of plant fertilizers Influenced by the "year without a summer" (1816) due to volcanic influence, which led to widespread famine in Europe – and clearly visible in the tree-ring record

Justus von Liebig, German chemist (1803 – 1873)

Limiting factors can influence site or tree selection in two ways

Constants (scalars or factorial	Is) Time-varying
 Growth factors affected b topography Major soil types Species Stand conditions, competition Geologic-scale climate Atmospheric pCO₂ 	 Temperature (growing season) Precipitation (proxy for soil moisture) May also affect nutrient availability Light (photoperiod)

The same reasoning applies to selecting a <u>sampling site</u>

- In general, we assume that the "site" represents a mean environment for the trees that grow there:
 - Soil, hydrology
 - Air chemistry
 - Mean and daily climate
 - Ecological interactions (e.g., exposure to fire, insects, disease, other environmental factors)
 - Net overall productivity

Tree age: do we always want the oldest trees?

Yes, IFF*:

- We are trying to build the longest possible chronology with the fewest number of trees
- We want to avoid modern era influences
- We want to know about long-ago environments

But maybe not if:

- We are trying to quantify a particular process (e.g. postfire regeneration)
- Old trees are less sensitive to some environmental influence of interest
- We are interested in recent history (e.g. tree response to climate since 1950)

* In mathematical logic, **IFF** ≡ "if and only if"

Always ask: Is this a representative environment for my question?

Pinus flexilis near Red River, NM. Photo by AM Lynch Do we always want the most climatesensitive sites or trees?

Yes, IFF:

- We are trying to **build a climate chronology** with the strongest climate correlation
- But **maybe not** if:
- We are trying to estimate the **ecological response** of tree populations over a **wider range of conditions**

Changes in regional expression of the global climate system are hypothesized to drive major changes in tree growth and survivorship

Left: Williams et al. 2012, Nature Climate Change. Right: Notaro et al. 2012, Ecological Applications

But these projections were based on composites of the most climate-sensitive trees

Source: Edmondson et al. 2014, TRR.

We test this hypothesis by breaking the canonical climate-sensitive rule

- Ask whether tree growth and survivorship are well predicted by the FDSI or other strongly droughtdriven indices over large landscapes
- Lower-elevation sites may fit FDSI prediction (recall that elevation is a proxy for environment)
- What about higher-elevation sites and other topoclimatic refugia?

CFI plot network, Chuska Mts, AZ; Guiterman 2016 and in prep.

What about species?

- In dendroclimatology trees are sensors of climate variation, so we want to maximize that signal
- In ecology, we may be interested in other questions

Important bark beetles of the American Southwest

Insect	Main hosts	Voltinism	1 st attack	Last
Western pine beetle	pines	1-3	Late spring	Cold weather
Mountain PB	PIPO PICO	1	Early July	September
Roundheaded PB	PIPO PIST	1	October	November
Southern PB, Mex PB	pines	Multi	Possible 12 m/yr	
Spruce beetle	PIEN	<u>≤</u> 1	May	July
DF beetle	PSME	1	Late spring	Early summer
W balsam bark beetle	ABLA	Semi to 1	early June	Mid-September
Fir engraver	Abies	Semi to 1+	July	August
Pinyon ips	piñons	Multi (3-4)	April	October

Species selection driven by host x non-host contrast

Slide courtesy Dr Ann Lynch, USFS/LTRR)

Exposure to disturbance (here, fire)

Arbellay et al. 2014a, b (Annals of Botany); Smith et al. 2016 (CJFR)

Sample Distribution

Dewar 2012 and in prep.

Fire history reconstruction (valle precision landscape scale) for Valles Caldera National Preserve, Jemez Mts, NM, USA

Dewar 2012 and in prep.

Figure 9

Another example:

- If you want a "pure" climate signal, you would choose trees with minimal influence of competition or disturbance (LAM terms)
- But if you <u>want</u> to study competition, you would sample along the relevant gradient (e.g. stand density)
- This might then be part of an experimental treatment design

01/03/2007 20:54

Nested plot designs work well for stratified sampling Sampling design for tree

Randomized tree selection for demography (*n*-tree sampling)

- Sample point center, no plot established
- Sampled trees by distance from center until reach n
- *n* typically = 20-30

Heyerdahl, Falk, Loehman (2014), CJFR

Many studies require the use of systematic sampling

Left: O'Connor et al. 2014, *Forest Ecology & Management* 329: 264–278. Right: Farris et al. 2010, *Ecol. Apps.* 20(6): 1598-1614.

Fire History Mapping

- 1. Numbers of years since last fire
- 2. 20th century fire frequency

Fine scale spatial reconstruction of fire in MCRNA (Swetnam and Falk)

Absence of fire is fairly even across MCRNA in the modern period.

Years Since Last Fire

Tree growth response to fire exposure

Time

Tree responses can be positive (a,b), negative (d,e), transient (b,d), persistent (a,e), or netural.

Williams EC et al. 2016 and in prep.

One more example: say you were interested in continental-scale latitudinal variation in tree growth in western North America

Falk and McKenzie, in progress

So: the central criterion in site and tree selection should always be:

What is your question?

Slides courtesy Dr Ann Lynch USFS

1.

1. Defoliators

2.

E and a fight

- 2. Bark beetles
- 3. Sap suckers
- 4. Regeneration pests
- 5. Wood-borers
- 6. Many more...

4.