Site and tree selection in
dendroecology
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What is the most important criterion
for site and tree selection?



What is the most important criterion
for site and tree selection?

YOUR QUESTION!



In other words:

 There is no universal guide to site or tree
selection

— Like everything else in research?, it should be
guided completely by your study design, which in
turn should be guided completely by the
question(s) you hope to answer

* resources permitting



That said, to do dendrochronology

of any kind we require:

. Growth increment (e.g. “rings”) distinct and
detectable (by some method)

Reliable annual ring formation

Ring formation sensitive to time-varying
environmental conditions (growth-limiting
environmental factors)

. Sensitivity reflected in growth variability among
years

. Strong common patterns of measurable
properties



The canonical view (Fritts 1965):
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A few notes about the canon:

Series that are either too
complacent or overly
sensitive are generally
problematic

Gradients are species
specific; thus the x-axis really
refers to the middle and
lower elevational range of a
population of species X
Note that the upper
elevational limit is not
shown; what might happen
up there?

Elevation is really a proxy for
other variables!
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Species populations vary uniquely
along environmental gradients
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What does it take to grow a tree?

TEMP
(growing
season)

NUTRIENTS
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Which of these factors are time varying
(meeting our dendro dating criteria)?

TEMP
(growing
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How do we apply our “fundamental
sampling principle” to this ecological
understanding of a tree?

* Follow the principle of limiting factors to growth:

* If we are trying to reconstruct “climate” (sic) we
want “climate-limited growth”

* If we are trying to answer an ecological
guestion...
— Not so obvious!



Liebig’s “Law of the Minimum”:
Growth is controlled by the essential factor in
most limited supply, not by total resources

Liebig applied this principle to the
development of plant fertilizers

Influenced by the “year without a
summer” (1816) due to volcanic
influence, which led to widespread
famine in Europe — and clearly visible

in the tree-ring record

Justus von Liebig, German
chemist (1803 — 1873)



1815 eruption of Mt
Tambora, Indonesia

Young Liebig
determined to solve

Studies biochemistry
of plants

150 km3 ash, pumice,
sulfur ejected into
atmosphere

Starvation, social
unrest in Europe

Recognizes role of
micronutrients NPK
for plant growth

Extremely cold,

cloudy weather

1816-17 (mean
global temp | 3°C)

Widespread crop
failures

Recognizes limiting
factor principle

Development of
modern fertilizers




1815 eruption of Mt
Tambora, Indonesia

Dendrochronologists
use this years as a
marker

Fritts, others
recognizes role of
micronutrients NPK
for plant growth

150 km3 ash, pumice,
sulfur ejected into
atmosphere

Synchronous narrow
rings Europe and
North America

Recognizes limiting
factor principle

Extremely cold,

cloudy weather

1816-17 (mean
global temp | 3°C)

Poor plant growth
conditions
widespread

LF principle in
dendrochronology

Applications to
dendroecology




Limiting factors can influence site or
tree selection in two ways

Constants (scalars or factorials)

Time-varying

Growth factors affected by
topography

Major soil types
Species

Stand conditions,
competition

Geologic-scale climate
Atmospheric pCO,

Temperature (growing
season)

Precipitation (proxy for soil
moisture)

— May also affect nutrient
availability

Light (photoperiod)




The same reasoning applies to
selecting a sampling site

* |[n general, we assume that the “site”
represents a mean environment for the trees
that grow there:

— Soil, hydrology
— Air chemistry
— Mean and daily climate

— Ecological interactions (e.g., exposure to fire,
insects, disease, other environmental factors)

— Net overall productivity



Tree age: do we always want the

oldest trees?

Yes, IFF*:

 We are trying to build the longest possible chronology
with the fewest number of trees

 We want to avoid modern era influences
* We want to know about long-ago environments
But maybe not if:

 We are trying to quantify a particular process (e.g. post-
fire regeneration)

e QOld trees are less sensitive to some environmental
influence of interest

 We are interested in recent history (e.g. tree response to
climate since 1950)

* In mathematical logic, IFF = “if and only if”



N

Pinus ﬂex:lls near Red River, NM.
Photo by AM Lynch




Do we always want the most climate-
sensitive sites or trees?
Yes, IFF:

 We are trying to build a climate chronology with the
strongest climate correlation

But maybe not if:

* We are trying to estimate the ecological response of
tree populations over a wider range of conditions



Changes in regional expression of the global
climate system are hypothesized to drive
major changes in tree growth and
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But these projections were based on composites
of the most climate-sensitive trees
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We test this hypothesis by breaking
the canonical climate-sensitive rule

® Navajo CFI plots
Elevation (m)
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* Ask whether tree growth and
survivorship are well predicted by
the FDSI or other strongly drought-
driven indices over large
landscapes

* Lower-elevation sites may fit FDSI
prediction (recall that elevation is
a proxy for environment)

* What about higher-elevation sites
and other topoclimatic refugia?

CFl plot network, Chuska Mts, AZ; Guiterman 2016 and in prep.



What about species?

* |[n dendroclimatology trees are sensors of
climate variation, so we want to maximize that

signal
* |n ecology, we may be interested in other
guestions



Important bark beetles of the American Southwest

_mm

Western pine beetle
Mountain PB
Roundheaded PB
Southern PB, Mex PB
Spruce beetle

DF beetle

W balsam bark beetle
Fir engraver

Pinyon ips
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pines
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PIPO PIST
pines
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|
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Exposure to disturbance (here, fire)
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Arbellay et al. 2014a, b (Annals of Botany); Smith et al. 2016 (CJFR)
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Sample Distribution

Vegetaﬁon Type
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Fire history reconstruction (tree precision, valle scale) for Valle San
Antonio, Valles Caldera National Preserve, Jemez Mts, NM, USA
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Fire history reconstruction (valle precision landscape scale) for
Valles Caldera National Preserve, Jemez Mts, NM, USA
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Fire-scarred samples
State

(O Burned in 1841

@ Burned in 1842

@ Neither year burned

© Not recording

Fire-scarred samples
State

(O Burned in 1860

@ Burned in 1861

@ Neither year burned

© Not recording







Another example:

* |f you want a “pure” climate signal, you would
choose trees with minimal influence of
competition or disturbance (LAM terms)

* But if you want to study competition, you
would sample along the relevant gradient
(e.g. stand density)

* This might then be part of an experimental
treatment design













sampling
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Nested plot designs work well for stratified

i Inner plot (0.01
/ ha) for complete

Sampling design for tree
demography, size and spatial
structure, and fire history,
Monument Canyon Research
Natural Area, NM, USA (Falk 2004,
Evans et al. 2017)

stand age and
tree size

Middle plot (0.1
ha) for overstory
tree age (trees
cored)

Outer plot (0.25
ha) for overstory
tree size and
spatial pattern




Randomized tree selection for demography
(n-tree sampling)
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Many studies require the use of systematic
sampling
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Fire History Mapping

1. Numbers of years since last fire
2. 20t century fire frequency

Fine scale spatial reconstruction of
fire in MCRNA (Swetnam and Falk)

Absence of fire is fairly even across
MCRNA in the modern period.

Years Since Last Fire

1981

1892

1749

600 300 0 600 Meters
N TN

Legend

e  Grid Point
Years Since Last Fire
- 0-10 years
- 10-20 years
:] 20-30 years
:] 30-40 years
[:] 40-50 years
:l 50-60 years
- 60-70 years
- 70-80 years
- 80+ years

Fire year maps by Tyson Swetnam



Tree growth response to fire

exposure

Burn Year

Growth

Transient

Persistent

Time

Tree responses can be positive

(a,b), negative (d,e), transient

(b,d), persistent (a,e), or netural.

Williams EC et al. 2016 and in prep.
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So: the central criterion in site and
tree selection should always be:

What is your question?






Defoliators

Bark beetles

Sap suckers
Regeneration pests
Wood-borers

Many more...
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