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Carbon Isotope Variability in Nature
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Leavitt, S.W., 2009. Carbon isotopes- stable. IN Encyclopedia
of Paleoclimatology and Ancient Environments. Springer



In nature, 1sotopic “fractionation” causes
differences In isotopic composition

Processes such as

> equilibrium reactions
» change of state

> diffusion

contribute to fractionation.

CAM Plants
m— C, Plants

Fractionation during these processes is driven by
differences in mass of the isotopes; fractionation
contributes to variability in isotope ratios among
compounds.



C tion Importance|Reason How to accomplish
site selection 3 high optimizes the strength of the environmental/ecophysiologic |select locations where the parameter of
— signal interest is particularly dominant

avoidance of pollution (if pollution is not the high Pollution may negatively or positively bias metabolic sites can be located distant from point

nvironmental parameter being investigate, performance of plants, including physiology related to sources of pollution and cities; sometimes air
isotope fractionation, e.g., stomatal conductance quality data may be available to better insure
avoidance of this affect
lavoidance of other anthropogenic effects high human disturbance, e.g., forest clearing and grazing, may |sites with known disturbance should be

influence growth and physiology related to isotope
fractionation

avoided

|number of trees at each site

=

! ——
dendrochronological datD high ensures exact dates of isotope values compared within and|species/location for which dating is likely
— between trees

high ensures isotopic value is representative of site analyze isotopes of 3-6 trees/site; number

should be proved using EPS (McCarroll and
Loader 2004) and inter-series correlation

result from changing physiology as tree ages

tree species ) potentially high|using a single species could avoid physiological differences|select single widespread species and use for
that affect isotopes among species climate calibration and reconstruction
[environmental/ecophysiologic parameter of interest_p high project questions are related to a specific parameter select species and location where the
parameter of interest is particularly dominant
—__ E—
"juvenile” or age-related eﬁecp high early period of growth may be different than when the tree |careful trend analyses to identify the length of
D (at least for |is mature, so isotopic composition in early rings may be the juvenile period; potentially statistical de-
carbon and |anomalously more or less depleted because of non-climatic|trending; isotope values from innermost rings
hydrogen) |effects on fractionation; also general "age effects" might might be skipped; rings of similar cambial age

might be analyzed and compared to avoid
general "age effects" (e.g., Marshall and
Monserud 2006)

portion of ring to be analyzed

potentially high

storage effects may result in significant time lag between
photosynthesis and when the isotopic composition is
incorporated into rings. therefore besides the more typical
analysis of whole rings, other options might be preferred
such as only earlywood, only latewood, or perhaps even
latewood of one year+earlywood from the next

separate rings according to scheme that
works best for project goals

/ \
pooling then analysis and isotope chronology high can save time and resources if rings from several trees are |will probably depend on project goals, but at
development or separate development of pooled prior to analysis, but statistical assessment of least some separate analysis of trees needed
Ws from each tree and then averagin reconstructions is less certain if pooled. to quantitatively assess inter-tree variability
|chemical pretreatment uncertain  |ensures confidence that isotopic value represents the year |cellulose has long been advocated, but in
of interests recent years whole wood or whole wood with
extractives removed by organic solvents have
from Leavitt, S.W.,, Treydte, K., Yu, L., 2010. Environmnent in time and space: Opportunities from bee.n advocated as producing efie‘?“v_e Y
) ) ; i |equivalent results, at least for §°°C; with sub-
tree-ring isotope networks. IN Understanling Movement, Pattern, and Processes on Earth Through ' |fossil wood, however, cellulose may not be an
1
1

Isotope Mapping, Ch. 6. Springer.

option




CHEMICAL PRETREATMENT



What compounds iIn tree rings are available to us for

measuring isotope ratios?
Table 3 Chemical Constituents of Wood

% Polymeric -Degree of Molecular
Composition  nature  polymerization building blocks  Role

Cellulose 45-50 linear - 5,000 -10,000 glucose  framework

molecule
v ~ crystalline ,
Hemicellulose 20-25 branched 150-200 primarily matrix
- ’ molecule ~ nonglucose

amorphous | sugars

Lignin - 20-30 three- 100-1,000 phenolpropane  matrix

| dimensional :
molecule :

Extractives 0-10 polymeric : poly’phenols encrusting

Randy Moore, Dennis Clark, and Darrell Vodopich, Botany Visual Resource Library ® 1998 The McGraw-Hill Companies, Inc. All rights reserved.

Arrangement of Fibrils, Microfibrils,
and Cellulose in Cell Walls

_____
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(Panshin& Zeeuw 1980)



Plant components, approximate % dry weight and relative tissue
decomposition rate

Plant component % dry weight General Relative
Composition | Decomposition™
- Carbohydrates CHO
Sugars, Starches 1
Hemicelluloses
Cellulose

Proteins CHONPS
simple H,O-soluble
conjugated

Lignins

Lipids

* 1-7, Highest to Lowest
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Prescott Pinyon Pine Tree-Ring 5°C

—y

extracted wood

whole wood

1940 1950 1960 1970
Pentad
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R

Leavitt 1987



Oak (England) a-cellulose and lignin

513C(%o)

—e— Cellulose
—e— Lignin

1915

(Robertson et al., 2004)



NUMBER OF TREES TO SAMPLE

Chapter 6
Stable Isotopes in Dendroclimatology: Moving
Beyond ‘Potential’

AMATLOPAES MR SN PAL PO NNIRUNMIENTAL R i

DENDROCLIMATOLOGY
Progross and Prospecty

Mary Gagen, Danny McCarroll, Neil J. Loader, and Iain Robertson

Yolume 11

FEdhited by
Makiolm K. Hughes, Thootsd W, Swetnass aid
Hemey ¥, Disr

Abstract When trees grow, they assimilate carbon from atmospheric carbon diox-

ide, and hydrogen and oxygen from soil water. The stable isotope ratios of these

three elements carry signals that can be interpreted in terms of past climate because

isotope ratios are climatically controlled by the tree’s water and gas exchange bud-

gets. The traditional tree-ring proxies form the most widespread and arguably the

most valuable of the high-resolution climate archives. Here we asses the added con-

tribution that can be made to dendroclimatology using stable isotope measurements.

@- Springer Vv"{:.dcscr_ibc what 1s involved in m_cusuring lrcc—riln_g slalblc. is-:_wlop_{:.s, provide a bria;?l‘
2011 review of progress to tia_ilc,ﬂldﬁ-;ulllul_]'lj: ways in lhlﬂ suéblc_lsult._wpcicn.d_mcﬁ
matology can be used to provide something new. We conclude that stable isotope

Jratios sometimes provide stronger climate signals than the traditional proxies, which

can be useful where sample replication is limited. Stable isotopes can also be used




How “well-behaved” is stable-1sotope composition
In tree rings? (i.e., how variable Is it?)

. : - \.' S _-: '_.__';‘-.'_,'.- B tea :
http://www.danheller.com/images/California/Humboldt/Redwoods/Slideshow/img7.html
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Fig. 1 a, 5'%0 values of cellulose from individual rings along two
radii R1 and R2 of tree AP2 (Abies pindrow). b, 8D values and ¢,

e pa | 5'3C values of nitrated cellulose from rings along three radii. R1,
1950 130 1579 R2 and R3, of the same tree. A, Samples along R1: ¥, samples
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(From Ramesh et al., 1985. Nature 317:802-804)

(Leavitt & Long 1984)




2 Abies pindrow trees,

1 Cedrus deodara,
1 Pinus wallichiana
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(Leavitt & Long 1984) (From Ramesh et al., 1985. Nature 317:802-804)



Inter and Intra tree variation in 813C in pinyon pine, Arizona

(Leavitt & Long, 1986. Ecology 67: 1002-1010)
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Leavitt 2010



what contributes to the isotopic composition we
measure In tree rings?

MODELS OF TREE-RING ISOTOPES



First, the source of isotopes.........

H,O + CO, & CH,O + O, (photosynthesis)
Carbon comes from CO,

How do the hydrogen and oxygen isotopes of water get
Incorporated into cellulose?

All the H in organic matter comes from water.
(most from water taken up by roots, but some also from
atmospheric vapor)

Oxygen could come from either CO, or water, but when CO, goes
into solution it quickly exchanges its O with the much more
abundant water, so again water taken up by roots dominates.
(DeNiro and Epstein, 1979)



Processes key to
Hydrogen (°H/*H) and Oxygen (180/1®Q) isotopes in tree rings

>»Local “source” water for plants
(precipitation/soil/groundwater)
»Evaporation

»Biochemical Fractionation
(autotrophic and heterotrophic)

»|sotopic Exchange



Schematic of 880 and 8D model
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/ _ A Roden et al., 2000




Next, the alteration of C 1sotopes by fractionation.......

Schematic of relative 513C fractionations involved in cellulose synthesis

Atmospheric CO,

Diffusion through
boundary layer

Metabolic water
Relative 813C

Biochemical
fractionation

|
|
|
|
|
|
|
| C)\
|
|
|
|
|
|
|
|

E > e < >
(CO,) in air (CO,) (CH,0), Alg rates
in water

(Modified after Hemming unpublished)



Conductance of CO, and Water Vapor through Leaf Stomata

"i v - ~ 1
DISCRIMINATION BY DIFFUSION OF CO, THROUNM A0  TRANSPIRATION (E)

STOMATAL CPENINC (2)

ATHOSPHRERIC C©O, (C,)

\\

ASSINILATION OF OO, BY RubBP CARBOXYLASE (A}

CISCRININATION BY RuBF CARBOXYLASE (b)




Next, the alteration of C 1sotopes by fractionation.......

Schematic of relative 513C fractionations involved in cellulose synthesis

Atmospheric CO,

Diffusion through
boundary layer

Metabolic water
Relative 813C

Biochemical
fractionation

|
|
|
|
|
|
|
| C)\
|
|
|
|
|
|
|
|

E > e < >
(CO,) in air (CO,) (CH,0), Alg rates
in water

(Modified after Hemming unpublished)



C Fractionation in C; and C, Plants
813CCC% plant (%0) — 813Cair -a- (b - a)Ci/Ca

813CC4 plant (%00) = 813Cair -d- (b4 o (bB' S)(I) ) a)Ci/Ca

A/g (intrinsic water-use efficiency, IWUE) = (C, - C;)/1.6

a 1s the fractionation by diffusion into the stomata (4.4%o),

b and b, are the fractionation caused by RuBP carboxylation (reported as ca. 27-30%o),

C, is the concentration of CO, in the intercellular leaf space, C, is concentration of CO, in air
b, is PEP-C fractionation (-5.7%., temperature-dependent),

s is fractionation from CO, diffusion of out of the bundle sheath (1.8%o)

¢ is the fraction of CO, fixed by PEP-C that leaks that leaks out of the bundle sheath cells,
A is the assimilation rate, g is the leaf stomatal conductance to water vapor transfer,

1.6 is the ratio of diffusivities of water vapor and CO, in air.



What can we reconstruct from &'3C in tree rings?.............

ENVIRONMENT FROM TREE-RING ISOTOPES



Reported tree-ring 6*C—temperature coefficients (irrespective of significance).
Most studies analyzed cellulose. “+” or “=" only indicated where magnitude was not specified.

Populus
Quercus
Athrotaxis

Lerman (1974)

Libby & Pandolfi (1974)
Fraser et al. (1976)
Pearman et al. (1976)
Wilson & Grinsted (1977)
Farmer (1979)

Harkness & Miller (1980)
Tans & Mook (1980)
Leavitt & Long (1982)
Freyer & Belacy (1983)
Leavitt & Long (1983)
Stuiver & Braziunas (1987)
Schleser et al. (1989)
Leavitt & Long (1991)
Lipp et al. (1991)
Hemmann (1993)
Dupouey et al. (1993)
Lipp et al. (1994)

Ogle & McCormac (1994)
Switsur et al. (1995)
Sonninen & Junger (1995)
Matsumoto & Kitigawa (1995)
Park et al. (1995)

Saurer et al. (1995)

Sheu et al. (1996)
Roberston et al. (1997a)
Robertson et al. (1997b)
Hemming et al. (1998)

+2.0>+2.7
+0.4
+0.24—-+0.48
+0.2

Athrotaxis

Pinus radiata

Ulmus americana
-10.2

+0.27—>+0.39
-0.27
+0.18

-0.24—-0.27
+0.32
+0.33

Pinus sylvestris
Quercus

Juniper monosperma
Pinus silvestris
Juniperus

Coniferae

Diplotaxis erucoides
Pinus ponderosa
Abies alba

Pinus silvestris L.
Fagus sylvatica L.
Abies alba

Quercus

Quercus petraea
Pinus silvestris L.

+0.33
+0.35
+0.25
+0.26

+0.30
+0.10
Cryptomeria japonica -0.29
Pinus koraiensis
+0.34—-+0.36

-0.46

Fagus silvatica

Abies Kawakamii
Quercus robur (Finland)
Quercus robur (England)
Quercus/Fagus/Pinus

I I
+| +| + + © ©
~ [

(Updated from Hemming,1998)



Evidence of Moisture Availability
Influence on 613C

40 50 60 70 80 20 100
Relative extractable water (%)

Figure 3. Relationship between §'“C and relative extractable soil water of July for 1950 to 1990. Straight line: same remarks as in Fig. |
(r=—0-77%%*),

(Dupouey et al., 1993)

2.5
moisture index

Fig. 6. Mean site 6'°C values for beech (Fagus silvatica.
C. n=6). spruce ( Picea abies. C . n = 6) and pine ( Pinus
silvestris. & . n = 6) with standard error of the mean (not
indicated where smaller than symbol size) versus the
moisture index of the sites. All sites are near Court, Swiss
Jura (Fig. 1). Indicated are also the corresponding values
for the beech trees from the sites “Twann Dry"=TWD
and “Twann Humid” = TWH. The solid lines are the
regression lines.

(Saurer et al., 1995)



What about seasonal applications?....................

PORTION OF RING ANALYZED
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after Schleser, G. H., Helle, G, Lucke, A. & Vos,H. (1999):
Isotope signals as climate proxies - the role of transfer function:
in the study of terrestrial archives. QSR, 18: 927-943

Seasonal variations of tree-ring 63C of
a) Populus nigra, b) Fagus sylvatica
and c) Quercus petraea.

Seasonal variations of tree-ring 63C of
Quercus petraea, air temperature and
precipitation Rostrevor, N-Ireland

1957 1958
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800 2400 0 1600 3200
adial increment of tree-ring
(increment unit 40um)
after Schleser, G. H., Helle, G, Lucke, A. & Vos,H. (1999):

Isotope signals as climate proxies - the role of transfer functions
in the study of terrestrial archives. QSR. 18: 927-943




TREE-RING ISOTOPES AND CLIMATE
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Chiricahua Mts
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Figure 1. (a) Proportion (in %) of summer (July-September (JAS)) precipitation with respect to the total annual precipita-
tion amount. Darker colors indicate higher summer precipitation proportion. The tree ring network in the U.S. extension of
the NAMS is indicated with black dots. Climate diagrams of precipitation (pre) and temperature (tmp) for (b) northern (UT),
(c) southeastern (NM), and (d) southwestern (AZ) regions of the NAMS.

Each tree ring from 1960 to 2012 was sliced into
three sections: the earlywood, which was split into
two halves EW1(first half) and EW2 (second half) and
the latewood (LW).
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Only EW1 and LW were used for isotopic analysis,
with the EW2 subdivision being stored for future
analysis.
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Hydroclimate variability from pinyon in the Baja
Peninsula [UA-UNAM-CONACYT consortium]
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TREE-RING ISOTOPES AND ECOLOGY



Effect of thinning on ponderosa pine stands near Black Butte, OR
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Figure 2. (a) BAI and (b) A of trees from the paired thinned and

control portions of stand A. Trees from the thinned stand are

indicated by closed symbols and from the control stand are indi-

cated hy_ open symbols. The datc. of thinning is indicated by the McDowell et al., PCE 2003
dashed line. Values are means with standard errors.




TREE-RING ISOTOPES AND ARCHAEOLOGY
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13C and "0 of wood from the Roman siege rampart in Masada, Israel (Ap 70-73):
Evidence for a less arid climate for the region
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The isotopic ratios and of cellulose from tamarix trees which were used by the Roman army as a
groundwork of the siege-rampart of Masada (ad 70—73) were compared with ratios measured in
present-day tamarix trees growing in the Masada region and in central Israel. The ancient tamarix cellulose
is depleted in both 13C and 180 compared to cellulose from trees growing in the Masada region today.
Similar trends were observed on comparing modern tamarix trees growing in the Negev Desert with those
growing in the temperate climate of central Israel. Considering the factors that can contribute to the
observed changes in isotopic composition, we conclude that the ancient trees enjoyed less arid
environmental conditions during their growth compared to contemporary trees in this desert region. This
report demonstrates the potential in using combined 180 and 13C analyses of archeological plant material
as independent indication of regional climatic change in desert areas (where conventional isotopic

analyses, such as in tree rings, are impractical). (-]
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