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a b s t r a c t

A common research task in dendroclimatology is identification of the monthly or seasonal climate

signal in an annual time series of indices of ring width. A MATLAB function, seascorr, is introduced as

a general statistical tool for identifying the signal. Monthly time series of primary and secondary

climate variables are input to the function along with a tree-ring time series and specifications for

seasonal groupings. The relationship of the tree-ring series with the seasonalized primary climate

variable is summarized by simple correlations. The relationship with the secondary climate variable is

summarized by partial correlations, controlling for the influence of the primary climate variable.

Confidence intervals on sample correlations and partial correlations are estimated with the help of

Monte Carlo simulation of the tree-ring series by exact simulation, which preserves the spectral

properties of the observed series. Results are summarized in graphical and statistical output. The

function is illustrated with examples from Tunisia and Russia.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Tree-ring reconstructions of precipitation, temperature,
streamflow, and other climatic variables are an important
resource in the study of the natural variability of climate (e.g.,
Touchan et al., 2008; Cook et al., 2007; Woodhouse et al., 2006).
A preliminary step in such reconstructions is identification of the
seasonal climate signal in the series. Depending on tree species,
setting, and climatic regime, tree growth may respond to different
types of climate variables, and to the climate of different seasons.
The climate signal is typically assessed with some form of
bivariate or multivariate statistical analysis of an annual tree-
ring series and monthly and seasonal climatic series. The climate
variables are often precipitation (P) and temperature (T), both of
which can be linked conceptually to tree-growth variations and
are widely available as long time series from instrumental records
(Fritts, 1976).

A simple approach to identification of the seasonal signal is to
graph correlations of the tree-ring series with monthly P and T for
several (typically 12 or more) months leading up to and including the
probable last month of the growth year of the tree (Fritts, 1976).
ll rights reserved.
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Statistical significance and physical interpretation of the correlations
may be complicated by several factors, including autocorrelation and
non-normality of variables, and intercorrelation of P and T. Principal
components analysis (PCA) is sometimes applied to decouple the
various climatic series (Fritts et al., 1971). Early studies rely on
theoretical distributions to assign statistical significance to correla-
tions (e.g., Guiot et al., 1982). Later studies incorporate bootstrapping
for this purpose, and also address possible temporal instability of
relationships (e.g., Guiot, 1991; Fritts, 1999; Biondi and Waikul,
2004).

In this paper we introduce a MATLAB function to summarize
the seasonal climate signal in a tree-ring series. The scenario of
application is an annual tree-ring series and a monthly climatic
time series. Two climatic variables—designated as primary and
secondary—are used in the analysis. These climate variables may
be P and T, but the analysis is generally applicable to any pair of
monthly climate variables physically related to tree growth.
Although the method uses correlations, it differs in several ways
from other existing methods. First is a focus on the signal
integrated over months. Second is the use of partial correlations
to separate confounding influence of the intercorrelation of
primary and secondary climate variables. Third is the use of exact
simulation (Percival and Constantine, 2006) to build confidence
intervals for correlations and partial correlations: simulations of
the tree-ring series are generated such that they retain the
spectral properties of the observed series. We describe the
methods and illustrate with applications to data from Tunisia
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and Russia. Code available from server at http://www.iamg.org/
CGEditor/index.htm.
2. Methods

2.1. Correlations

Let x1, x2, and x3 be annual time series covering a common
period of N years. Further, consider x1 and x2 to be seasonalized
(for a specific season) primary and secondary climate variables,
and x3 a tree-ring series. For example, x1 might be summer total
(July–September) precipitation, x2 summer average maximum
daily temperature, and x3 a standard tree-ring chronology
(Cook, 1985). The linear relationship between x1 and x3 is
summarized in seascorr by the simple (Pearson) correlation
coefficient (Wilks, 1995), denoted here as r13. Likewise the simple
correlations for the other pairs of variables are denoted as r12 and
r23. The linear relationship between x2 and x3 with the influence
of x1 removed is summarized by the partial correlation (Mardia
et al., 1979) r23.1, where the subscripts before the dot denote the
variables being correlated and the subscript after the dot denotes
the variable being ‘‘controlled for.’’ Following Panofsky and Brier
(1968), the partial correlation is related to the individual simple
correlations by

r23:1 ¼
r23�r12r13ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�r2
12

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�r2

13

q : ð1Þ

The intent in using the partial correlation is to remove the
influence of x1 on the assessment of the importance of x2 to x3.
Eq. (1) shows that the partial correlation between x2 and x3 is zero
if the simple correlation between x2 and x3 is just equal to the
product of the individual bivariate correlations of x1 with x2 and
x3. In practice—and in seascorr—r23 is computed as the simple
correlation between the residuals from two linear regressions:
regression of x3 on x1, and regression of x2 on x1 (Panofsky and
Brier, 1968; Mardia et al., 1979).

2.2. Significance of correlations

Confidence intervals for correlations and partial correlations
are derived by Monte Carlo simulation. Series x3 is simulated m

times, where m is some large number (m41000), and correla-
tions and partial correlations are computed using the simulated x3

in place of the observed x3. The empirical cumulative distribution
functions (cdfs) of the resulting m simulation-based correlations
and partial correlations are used to establish the desired con-
fidence intervals. Empirical nonexceedance probabilities for the
simulation-based correlations or partial correlations are com-
puted by the Weibull formula (Stedinger et al., 1992),

pðrðiÞÞ ¼
i

mþ1
, ð2Þ

where rðiÞ, i¼ 1,2, . . . ,m are the ranked (i¼1 is lowest, or most
negative) correlations of x1 with the m simulations of x3, and pðrðiÞÞ

is the empirical probability of an absolute correlation less than or
equal to r(i). The a¼ 0:05 thresholds for significance of a sample
correlation are set at the 0.025 and 0.975 probability points of the
cdf defined by Eq. (2); the a¼ 0:01 thresholds are set at the 0.005
and 0.995 probability points. Nonexceedance probabilities by
Eq. (2) are also computed and output for all sample correlations
and partial correlations. These probabilities are computed by
linearly interpolating the rank, i for the sample statistics. If a sample
correlation or partial correlation happens to be outside the range of
the corresponding simulation-based correlations the rank is set to
1 for large negative correlation and m for large positive.
The simulations of x3 are generated by exact simulation from
nonparametric spectral estimates (Percival and Constantine,
2006) using the circulant embedding formulation of Dietrich
and Newsam (1997). Series x3 is regarded as a realization of
length N years of some stationary Gaussian generating process
whose spectrum can be estimated from the sample x3. The first
step is estimation of the spectrum of x3 through computation of
the direct Fourier transform (DFT) and periodogram (Bloomfield,
2000). Preparation of x3 for periodogram analysis in seascorr

consists of: subtraction of sample mean; tapering of 5% of each
end with a raised-cosine filter (Bloomfield, 2000); shifting back to
a mean of exactly zero; padding with zeros to a length twice the
next highest power of 2 larger than the length of x3; and rescaling
such that the variance of the tapered and padded series equals the
variance of the original x3. If we let Xt be the adjusted version of
x3, the spectral weights are computed as

SðkÞ ¼
X2M�1

t ¼ 0

Xte
�i2pfkt

�����

�����
2

, k¼ 0, . . . ,2M�1, ð3Þ

where M is the next highest power of 2 larger than the length of
x3, 2M is the length of Xt, and fk ¼ k=ð2MÞ is frequency in cycles/
year.

Circulant embedding by the Dietrich and Newsam (1997)
algorithm begins with sampling a set of 4M independent standard
Gaussian random variables Z0,Z1, . . . ,Z4M�1 and generating the
complex-valued sequence

Vk ¼ ðZ2kþ iZ2kþ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sk=ð2MÞ

p
, 0rkr ð2M�1Þ: ð4Þ

The DFT of this sequence,

Vt ¼
X2M�1

k ¼ 0

Vke�i2pfkt , t¼ 0, . . . ,ð2M�1Þ, ð5Þ

is a complex series Vt. The first M elements the real and imaginary
parts of Vt are two independent realizations of length M of the
generating process for x3 (Percival and Constantine, 2006). These
realizations are then truncated so that their length equals the
length of x3.

2.3. Seasonal grouping

The correlation analysis described in Section 2.1 is repeated for
each of 56 seasons specified by the ending month of tree-ring
growth and four season lengths, mj, j¼ 1,2,3,4. The seasons are
the mj-month period ending in each of the 14 months leading up
to and including ending month of tree-ring growth. For example,
if growth is specified as complete in September and the season
lengths are {1,3,6,12}, correlations are computed for individual
months from August of the previous year through September of
the growth year, 3-month seasons ending in August of the
previous year through September of the growth year, and so
forth. The 56 seasons accordingly comprise 14 seasons for each of
the four specified season-lengths.

2.4. Temporal stability

The correlation analyses described in Section 2.1 are intended
for summarizing relationships that are stationary, or not depen-
dent on time. Temporally evolving relationships (e.g., Biondi,
2000) can be summarized more appropriately by other methods,
such as the Kalman filter (Visser and Molenaar, 1988) and
correlations in sliding time-windows (Biondi and Waikul, 2004).
Seascorr offers two ways to check on temporal stability of
relationships. First is control over the analysis period, such that
the period may readily be changed and graphical outputs for
different periods compared. Second is a test of the difference of
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correlations in specified nonoverlapping ‘‘early’’ and ‘‘late’’ sub-
periods. This test is applied only to the highest-correlated seasons
for each of the four specified season-lengths described in Section
2.3. The test-statistic depends on two sample correlations and
their respective sample sizes, and utilizes Fisher’s Z-transforma-
tion of correlations to facilitate significance-testing (Snedecor and
Cochran, 1989). Sample sizes for assessment of significance are
adjusted downward in seascorr to ‘‘effective sample size,’’ if
necessary, to account for positive autocorrelation in the time
series (Dawdy and Matalas, 1964). A detailed description of the
test is relegated to the Supplementary materials. It should be
emphasized that this test assumes that the time series being
correlated are bivariate-normal distributed. This assumption is
likely violated for some types of data—e.g., when the climatic
series is monthly total or seasonal-total precipitation in an arid
region.
3. Program description

Seascorr was written with MATLAB Release 2010b running
under the Ubuntu Release 10.04 Linux operating system. The code
was written to be platform-independent, and has been tested on
Windows and OSX systems. Seascorr is a MATLAB function that
relies on 22 lower-level user-written functions in addition to
numerous built-in MATLAB functions and the MATLAB ‘‘Statistics’’
toolbox. Built-in function FFT (fast Fourier transform) is used
both in periodogram computation and in the computation of Vt by
Eq. (5), while the Statistics Toolbox function normrnd is used to
generate the N(0,1) sequences required by Eq. (4). Program flow
proceeds in the following steps:
1.
 Reading of input data and specifications for seasons and
analysis period.
2.
 Seasonalizing of monthly climate data.

3.
 Regression to generate versions of x3 and x2 with dependence

on x1 removed.

4.
 Computation of sample correlations and partial correlations.

5.
 Simulation of tree-ring series, x3 (e.g., 1000 simulations).

6.
 Computation of correlations and partial correlations for

simulations.

7.
 Testing of temporal stability of correlations.

8.
 Assignment of confidence levels for sample correlations and

partial correlations.

9.
1 Because correlations must be computed with aggregated climate data

including months prior to the growth year, the default analysis period cannot

actually begin until the first growth year two years after the start of monthly

climate data—January 1901 for this example.
Graphical and statistical output.

Seascorr can be called either with or without input argu-
ments. Input arguments include tree-ring data, climatic data,
season-lengths, ending month of growth year, period of analysis,
text for labeling (e.g., units of climatic data), and program options.
If called without input arguments, or in ‘‘point-and-click’’ mode,
seascorr prompts the user to click on input data files and to
enter other program settings in edit boxes or by menu choices. In
point-and-click mode, the monthly climatic data are assumed to
be in 13-column space-separated ascii files, and the tree-ring data
either in a 2-column matrix (year and value) or in the standard
‘‘crn-file’’ format of the International Tree-Ring Data Bank. When
calling seascorr with input arguments, or in ‘‘driver-script’’
mode, the user writes a short MATLAB script that sets up the
input arguments and calls the function. Program options allow for
control over the analysis period, exchange of ‘‘primary’’ and
‘‘secondary’’ roles of the two climate variables, and optional color
or black-and-white graphics output.

Seascorr output includes 11 figure windows and an output
argument. The key figure window has two bar charts displaying
the correlations and partial correlations of the tree-ring series
with the seasonalized primary and secondary climate variables.
Each bar chart has 56 bars, corresponding to seasons with four
specified lengths and 14 different ending months. Statistical
significance at a¼ 0:05 or a¼ 0:01 is color coded. Ancillary
graphics, in the other figure windows, include time series plots,
scatterplots, and other graphics to aid in the interpretation of the
correlations and partial correlations. The single output argument
is a MATLAB structure variable with statistics and tables.
4. Sample applications

Seascorr is illustrated with data from Tunisia and Russia. All
figures in this section are figure windows output by seascorr.
The Tunisia input data are a Pinus halepensis standard tree-ring
index and gridded monthly total precipitation (P) and monthly
mean temperature (T) from Touchan et al. (2008). The tree-ring
site is Sadine, Tunisia (36.11N, 8.51E, elevation 400 m). The
climate data, from the 0.51 gridded climate data set CRU T5 2.1
(Mitchell and Jones, 2005), are an average over the box 7.51–9.51E
and 34.51–36.51N. The common years of data coverage, 1903–
2002, define the default analysis period1 for seascorr. P and T

were assigned as primary and secondary climate variables,
respectively. September was specified as the ending month of
tree growth, and the four season-lengths were set at 1, 3, 9, and
12 months.

By construction, a tree-ring index varies around a mean of
1.0 such that the index can be roughly interpreted as a proportion
of normal growth in any given year. The Sadine index ranges from
a low of zero to a high of greater than 2.5, and exhibits
considerable variability on interannual and decadal time scales
(Fig. 1A). A histogram and Lilliefors test (Conover, 1980) suggest
the index is Gaussian, an assumption in exact simulation (Fig. 1B).
The periodogram shows a relatively large proportion of the
variance of the index at wavelengths 5–30 year (Fig. 2). The
raw-periodogram ordinates plotted are the spectral weights used
in Eq. (3) for simulation of the tree-ring series.

Monthly P is significantly positively correlated (a¼ 0:01) with
tree-ring index in six months between October preceding the
growth year and May of the growth year (Fig. 3). Correlation with
P increases with increasing length of averaging period, at least
through 9 months; maximum correlation is reached for the
9-month period ending with June of the growth year. Correlation
with P actually declines slightly as the season length is expanded
from 9 to 12 months. A scan of Fig. 3 identifies highest P

correlations for ‘‘seasons’’ of length 1, 3, 9, and 12 months ending
in October, May, June, and June, respectively (Fig. 4). The non-
exceedance probabilities listed in Fig. 4 are 0.9990 for each season
because the correlations for observed data are higher than
those for any of the corresponding 1000 simulations (Eq. (2)
with i¼m¼ 1000). Scatterplots of P on tree-ring index for
those seasons show that the relationships are approximately
linear and not driven by outliers (Fig. 5). The correlation of tree-
ring index with P for the most highly correlated seasons appear
stable over time: test results indicate we cannot reject the null
hypothesis that the sample correlations for the first and last
halves of period 1903–2002 are from the same population (Fig. 6).
In summary, an October–June P reconstruction period is sug-
gested, though an annual (July–June) period would also be
reasonable.
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May is the only month identified with a significant T response
(Fig. 3, bottom). The significant partial correlation implies addi-
tional influence of May T on growth beyond that explainable by
covariation of P with T. Monthly P and T for the Tunisia data are
significantly negatively correlated (a¼ 0:05) in 10 months of the
year, including May (Supplementary materials).



Fig. 3. Correlations and partial correlations of Tunisia tree-ring series with seasonalized climate variables. (Top) Simple correlations with the primary climate variable, P.

(Bottom) Partial correlations of tree-ring index with secondary climate variable, T.

Fig. 4. Summary seascorr figure window. Listed are the seasonal groupings of

P most highly correlated with Tunisia tree rings. One or two asterisks flag

significant correlations at 95% or 99%. Summary window also lists the other figure

windows and gives instructions for obtaining statistics from the MATLAB

command window.
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In the above example, with a setting of 1000 simulations
seascorr required 20 s of cpu time on a 2.16 GHz PC with 4 MB
RAM and a 250-GB hard drive. With 10 000 simulations the
required cpu time was 152 s.

For regions where tree growth is primarily controlled by
temperature variability, the default roles of P and T as primary
and secondary climate variables can be readily exchanged to
focus the analysis on temperature relationship with tree growth.
In Fig. 7 we show such an application with a Larix sibirica tree-ring
chronology from the Yamal Peninsula, Russia (Hantemirov and
Shiyatov, 2002; Briffa et al., 2008) and regional climate data. We
use temperature data from the CRUTEM3 (Brohan et al., 2006)
and precipitation data from the CRU TS3.0, corresponding in both
cases to the grid box closest to 701E and 701N. We used a
regularized expectation maximization approach with ridge
regression (Schneider, 2001) to impute 1.27% of missing tem-
perature values at this grid point in this dataset, which allows us
to evaluate climate/tree growth relationships over the period
1903–1996, using an annual window spanning the prior October
to the growing season November. This analysis (Fig. 7) shows a
statistically significant relationship with summer growing season
temperatures, with the strongest correlations in July. Significant
seasonal (3-month) correlations are also consistently identified
for the summer (MJJ and JJA). Larger seasonal windows, however,
do not show consistently significant relationships, and there is no
evidence that ring width is correlated with mean annual tem-
perature. These findings agree with those of Briffa et al. (2008),
although their correlation analysis over a shorter period (1950–
1994) showed a stronger monthly correlation in June. Splitting
the time period of analysis, following Sections 2.3 and 2.4 above,
reveals no temporal instability between ring width and summer
temperature, and therefore no sign of a ‘‘divergence effect’’
(D’Arrigo et al., 2008). Positive-sign partial correlations with
precipitation amount are detected by seascorr in the prior
winter (OND), possibly indicating that snowfall can have a
secondary influence on subsequent summer growth.
5. Comparison with other programs

Two other programs that can be used to identify the months of
significant P and T influence on tree growth are the Cþþ program
DENDROCLIM2002 (Biondi and Waikul, 2004) and the DOS pro-
gram PRECON (Fritts, 1999). Seascorr differs from these pro-
grams in its Monte Carlo approach to significance levels, and its
focus on the integrated (over months) climate signal. Other
differences include seascorr’s suite of diagnostic plots of
climate and tree-ring series (see Appendix A) and access to the
MATLAB graphics environment, which allows direct export of
figures in graphics formats suitable for presentation and publica-
tion. The other available programs do offer some analyses not
included in seascorr. For example, DENDROCLIM2002 can be
used to study the time-evolution of the relationship between tree
rings and climate with more temporal precision.



0 50 100 150
0

500

1000

1500

2000

2500

3000

P(mm)

T
re

e 
R

in
g 

In
de

x

Season: 1 mo ending in Oct#
r = 0.40

0 100 200 300
0

500

1000

1500

2000

2500

3000

P(mm)

T
re

e 
R

in
g 

In
de

x

Season: 3 mos ending in May
r = 0.49

200 400 600 800
0

500

1000

1500

2000

2500

3000

P(mm)

T
re

e 
R

in
g 

In
de

x

Season: 9 mos ending in Jun
r = 0.68

200 400 600 800
0

500

1000

1500

2000

2500

3000

P(mm)

T
re

e 
R

in
g 

In
de

x

Season: 12 mos ending in Jun
r = 0.68

Fig. 5. Scatterplots of tree-ring index on seasonalized primary climate variable for most highly correlated seasons.
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Despite the various differences in scope and method, seas-
corr, DENDROCLIM2002 and PRECON all aim at least in part on
identifying the individual months of most important climate
influence to tree growth. DENDROCLIM2002 and PRECON run on
the Tunisia sample data gave results broadly similar to those of
seascorr: precipitation in 4–6 cool-season months is most



Fig. 7. Correlations and partial correlations of Yamal Peninsula tree-ring series with seasonalized climate variables. (Top) Simple correlations with the primary climate

variable, T. (Bottom) Partial correlations of tree-ring index with the secondary climate variable, P.
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important to tree growth, though the individual months marked
as significant do not coincide exactly for all three programs.
Graphics output from the programs is compared in the Supple-
mental material (see Appendix A).
6. Caveats and limitations

Exact simulation as applied here assumes the generating
process of the tree-ring series is stationary and Gaussian. The
bivariate relationships examined are also assumed to be linear.
Moreover, even for linear relationships, complications can arise
with interpretation of correlations when the time series are
autocorrelated (Chatfield, 2004). A mismatch of autocorrelation
in the tree-ring index and climate time series may indicate that
the residual rather than standard chronology (Cook, 1985) should
be used in seascorr. Diagnostic plots and statistics are produced
by seascorr to address these issues (see Appendix A). We note
also that the significance levels in seascorr are not ‘‘simulta-
neous’’: they have not been adjusted for multiple comparisons, as
with a Bonferroni adjustment (Snedecor and Cochran, 1989). A
scan of more than 20 sample correlations (e.g, as in Fig. 3) is
therefore likely to identify one or more correlations significant at
a¼ 0:05 by chance alone. Monte Carlo sampling to establish
confidence intervals can also at times produce non-intuitive
results. For example, a sample correlation near the 95th percen-
tile of simulation-based correlations may be identified as sig-
nificant at a¼ 0:05 in one run and not significant in the next.
Moreover, the ability to detect significant relationships may be
limited by the climatic data. Station, gridded or regionally
averaged climate data can only approximate the climate varia-
tions where the trees are growing. Finally, because an input signal
must vary sufficiently to elicit a response in the output, the
climate signal for a particular season may not emerge merely
because that season happens to have low climatic variability in
the available time series sample.
7. Conclusion

Seascorr is intended as a statistical/graphical tool to supple-
ment existing tools available for analyzing the seasonal climate
signal in tree-ring data. Seascorr is of course useful only in the
MATLAB environment, though it is platform-independent, across
Unix, Windows, and Mac platforms. Its primary advantages over
existing software are convenient trial-and-error assessment of
possible ‘‘seasons’’ for reconstruction of a climate variable, a suite
of ancillary diagnostic plots, and ease of export of figures in many
graphics formats. The incorporation of exact simulation could be
advantageous for autocorrelated tree-ring series, especially those
with an autocorrelation structure not following some simple low-
order autoregressive process.
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Appendix A. Supplementary materials

Supplementary materials, available from the server at http://
www.iamg.org/CGEditor/index.htm, include seascorr running
instructions, sample input data, output data, and annotated full
sample graphics output for the Tunisia example. Ancillary gra-
phics windows not shown in this paper include: (1) bar chart of
correlations of P with T, (2) climograph of monthly P and T,
(3) autocorrelation function of tree-ring series, (4) bar chart of
lag-1 autocorrelation of P for the 56 seasons, (5) time plots
showing covariation of the tree-ring series with P for the seasons
with highest correlation of P with tree rings. The Supplementary
Materials also include annotated graphical output from PRECON

and DENDROCLIM2002 run on the Tunisia data, and a mathema-
tical description of the difference-of-correlation test summarized
in Fig. 6.
Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cageo.2011.01.013.
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